Aída Alejos
Quisiera empezar diciendo que el objetivo de este documento es tratar de explicar (incluso a riesgo de quedarme corta en la exlicación) porque esta auditoría al 46% restantes de las máquinas de votación y cajas resguardo es, técnicamente, innecesaria. Seguramente en un país donde la racionalidad y los criterios técnicos se imponen a los "caprichitos", ni siquiera se pensaría en una auditoría ciudadana superior al 20%.
En primer lugar, tomando lo dicho por Ary, Jacobs y Razavieh (1989, c.p. Arias , 2006; página 87) cuando se trata de investigaciones de tipo descriptivo, es decir aquellas en las que el objetivo es caracterizar el comportamiento de un hecho, fenómeno, individuo o grupo, con tomar una muestra aleatoria de 10 a 20% es suficiente. En esa misma publicación citando a Ramírez (1999, c.p. Arias 2006, página 87) indica que en procesos sociales las mediciones deben apuntar a una muestra de al menos 30% de la población.
Me detengo en este punto para indicar que estas dos afirmaciones están más referidas a investigaciones para la determinación de comportamiento social con medición de varias variables y con entornos que pueden afectar a estas variables.
Me detengo en este punto para indicar que estas dos afirmaciones están más referidas a investigaciones para la determinación de comportamiento social con medición de varias variables y con entornos que pueden afectar a estas variables.
Ahora bien, mas que una investigación social, en el caso de la auditoría ciudadana, se trata de verificar si una población de 39.376 máquinas y mesas de votación, presenta algún tipo de diferencia entre votantes registrados en el cuaderno de votación, votos contados por la máquina, votos adjudicados a cada opción y comprobantes de votación. Esto lo convierte en un problema más simple: determinar que cantidad de máquinas hay que auditar para asegurar que si las revisadas están bien, no se presentarán errores en las que no sean sorteadas.
Entonces, si ningún ciudadano se ha quejado que su comprobante ha arrojado algo diferente a lo que fue su voluntad ante la máquina, si el acta q emite la máquina no presenta diferencia con el conteo de comprobantes y si el número de comprobantes coincide con los votantes q firmaron el libro, se cierra la auditoría como exitosa y se concluye que en efecto los datos q aparecen en el acta son correctos. En este punto, hay q decir que nadie, NADIE, ha dicho hasta ahora que se presentaron inconsistencias en la auditoría ciudadana de 54% de las máquinas realizada el 14 A.
¿Que quiere decir esto? Estas máquinas, que fueron sorteadas por los propios miembros de mesas al cierre de las mismas en cada centro de votación constituyen una muestra aleatoria, conseguida a través del sorteo, que puede servir de pre muestra para determinar cuantas máquinas más habría que auditar para garantizar que las otras máquinas también emitieron resultados correctos.
Al aplicar las fórmulas de calculo de tamaño de muestra para estimar proporciones poblacionales y tomando un Z critico o área bajo la curva que se desee, al colocar que en esa premuestra P (% de máquinas con auditoría exitosa) era igual a 100% y que Q (% de máquinas con auditoría no exitosa) es igual a 0 %, la fórmula arroja un número n de muestras igual a cero (0) (si alguno de los lectores desea profundizar sobre el tema de calculo de tamaño de la muestra puede buscar el tema en cualquier libro de estadística o en cualquier enlace de Internet, ver Nota A) Esto es porque es estadísticamente imposible que después escoger aleatoriamente vía sorteo y de verificar la mitad de estos elementos (en realidad 54%) de una población y, habiendo resultado todos los elementos (máquinas) aptos (auditoría exitosa), puedan aparecer luego en los 46% restantes algún elemento con defecto. En palabras simples, si yo en una caja con 39.376 bolitas rojas, realizo una premuestra de 21.264 bolitas (al azar, aleatoriamente), y en esa muestra consigo que las 21.264 bolitas que saco son rojas, implica que el 100% de la muestra tomada son de bolitas rojas. Por ende, el cálculo de muestras adicionales da cero (0), no importa los niveles de confianza y error escogidos.
Por eso entiendo la decisión del CNE más como una decisión dirigida a calmar el clima político, que a una decisión de carácter técnico. Por eso considero que ha sido muy irresponsable la primera declaración de Vicente Díaz el propio día 14 de Abril, la de Capriles y su comando, y de hecho es esta una de las razones por la que la impugnación no es posible. No hay elementos que objetivamente puedan presentarse para argumentar la existencia de un fraude.
Nicolás Maduro gano, ellos lo saben, por eso esta táctica dilatoria de pedir auditorías y conteos, lo que nos debe mantener atentos sobre que van a hacer una vez terminada la auditoría complementaria, y que planes activarán, ya que esto comprueba que de democráticos, no tienen nada.
Twitter: @aidaalejos
Bibliografía
Arias F. (2006) El proyecto de investigación. Introducción a la metodología científica. Editorial Episteme. 5ta Edición
Nota A:
n = Z2 * P * Q * N / e2 (N-1) + Z2 * P * Q
Leyenda:
n = Número de elementos de la muestra.
N = Número de elementos del universo.
P/Q = Probabilidades con las que se presenta el fenómeno.
Z2 = Valor crítico correspondiente al nivel de confianza elegido: siempre se opera con valor sigma. Véase la tabla de valores de Z.
E = Margen de error o de imprecisión permitido (lo determinará el director del estudio).
No hay comentarios:
Publicar un comentario